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A discontinuous and noninvertible circle map is introduced to describe modulated relaxation
oscillators. The boundaries of the parameter regions are calculated where images of the jumping gap
completely cover the noninvertible region so that the dynamics of the system are abruptly changed.
We show that a kind of structure called a “hole” may appear due to the interaction between these
two competing characteristics and may lead to some dynamic features. The influence of the holes
on the boundaries of Arnold tongues is also discussed.

PACS number(s): 05.45.+b

I. INTRODUCTION

Recently, one-dimensional maps, which are both dis-
continuous and noninvertible, have attracted much at-
tention [1-16]. In such maps, one can observe types of
transition behavior that are different from those of ev-
erywhere differentiable maps [3-7, 14, 15]. Nusse, Ott,
and Yorke have discussed these transitions in generic
cases and labeled them as “border-collision bifurcation”
(18, 19].

In this paper we will give special attention to the
circle maps, which describe relaxation oscillators in
different fields, such as biology [8, 9, 13, 16], electronics
[12,15, 17], solid state physics [11], and other fields [10].
This kind of map often has two or more critical lines
where discontinuity or noninvertibility occurs [9-12, 15].
Above these critical lines, the maps become both dis-
continuous and noninvertible, i.e., they have gaps and
extrema. Recently, we suggested that in this kind of sys-
tems, the border-collision bifurcation may induce some
type of intermittency. We have shown that the scaling be-
havior of average laminar lengths [20,21], the distribution
behavior of laminar lengths [22], the influence of external
noise [23], and the scaling behavior of Lyapunov expo-
nents [24] in this type of intermittency are different from
those of the conventional three types. As far as we know,
up to now, there have been three experimental proofs on
this type (named type V') of intermittency [25-27]. In
addition to the experimental observation of type-V in-
termittency in an electronic relaxation oscillator made
by He and co-workers [25,22, 23], Wunderlich, Moorman,
and Koch have observed an intermittency with the log-
arithmic dependence on the control parameter. This is
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believed to be caused by a type-V intermittency in a gas
discharge system [26]. Richter et al. have confirmed a
type-V intermittency in the oscillations of P-type ger-
manium [27]. We are convinced that the dynamic fea-
tures induced by the interaction between discontinuity
and noninvertibility can also appear in many practical
systems and are of general interest.

In recent publications [14,15] we have discussed some
dynamic behaviors other than type-V intermittency in-
duced by the interactions between discontinuity and non-
invertibility, such as the coexistence of attractors induced
by holes and the disappearance of chaos due to a com-
plete covering of the noninvertible region by gap images.
In this paper we will discuss these behaviors further by
using a piecewise linear circle map in order to do more an-
alytical treatment. Also, we will discuss how the bound-
aries of Arnold tongues depend on this interaction. The
paper is organized as follows. We will introduce the sys-
tem, calculate the Lyapunov exponent, and discuss the
partitions of the parameter space in Sec. II. In Sec. III
we will calculate the boundaries of the regions where the
noninvertible region of the map is completely covered by
the images of the gap, and will discuss the abrupt change
of the system dynamics. In Sec. IV we will define the
concept of hole, discuss the possible number of holes, and
discuss the condition of their appearance. In Sec. V we
will calculate the boundaries of Arnold tongues and the
ranges where periodic attractors coexist and discuss the
role of holes in these calculations. In Sec. VI we will
share some further thoughts.

II. SYSTEM

The system we have extensively studied [12,15,21] is
a circle map describing a thyratron electronic relaxation
oscillator which was often used in electronic instruments
before 1970. Today people use similar circuits but made
of modern electronic parts [25,22,23]. The Poincaré
map of the system and its corresponding integrate-and-
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fire model, in which a variable relaxes between a sine-
modulated upper threshold and a constant lower thresh-
old, may also be thought of as a model of some biological
systems [8,9] or some systems in solid state physics [12].
Numerical investigations, along with some analytical in-
vestigations, have been done. However, the analytical
discussion is difficult due to the strong nonlinear charac-
ter and the implicit function form of the map. In order to
do more analytical calculations and get more quantita-
tive understanding, we reduce this model into a simplified
one, which can still preserve the main characteristics and
dynamic features.

In the simplified model, a variable v relaxes linearly
between a trapezoidal wave-modulated upper threshold
and a constant lower threshold as shown in Fig. 1. The
circle map describing it will be piecewise linear and thus
very easy to analyze. According to the geometry shown
in Fig. 1, the map is easily deduced as follows after per-
forming some algebra. By taking the switching points
of t at the lower threshold, namely, t,,, as the Poincaré
section, the map will read

tmy1 = fz(tm) = k_’itm + bi (7' =1- 4)7 (1)
where
b — I;(dIg + A)
T I(dL = A)’
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FIG. 1. A schematic drawing to show the integrate-and-

fire model describing the trapezoidal wave-modulated relax-
ation oscillator.

b (dla— A)[d(1— A) + (n+0.5 + d) 4]
= dI(dI; + A)
+d(1 —A)+(n+05+d)A
dl, ’

ka=1, by=J(1—A).

The ranges of definition of the function branches are, for
f2, f2, f3, and f4, respectively,

tmi S tm < tmcy

1-A 1+ A4

tmi =n—d— I y tme=n+4+d-— I; 5
1+ A
tme < tm < timm, tmm =n+05—d— -; H
1-A
tmm S tm <tmey, tme=n+05+d~— A )

tme Sty <141t

A is the amplitude of the trapezoidal wave, 4d is the
difference between its lower side and upper side, I; is
the constant arising slope, I is the absolute value of the
constant falling slope of the relaxation oscillation, and
J=3+4.

This map has two critical lines. The discontinuity
appears at I; = % and the noninvertibility appears at
I; = %. These two lines divide the parameter space
I; — I into four regions of qualitatively different behav-
iors [9-12,15]. In the region where I; > % and I; > %,
the map is continuous as well as invertible. The attrac-
tors can be either quasiperiodic or periodic [28,10]. In the
region where I; > % but I; < %, the map is continuous
but noninvertible. The attractors can be chaotic or peri-
odic [28-30, 1]. In the region where I; < 4 but Iy > 4,
the map is discontinuous but invertible and the attrac-
tors can only be periodic [1,31]. In the region where
I; < % and I; < %, the map becomes both discontin-
uous and noninvertible. This is the region in which we
are interested. In this region, the f; branch of the map-
ping function (1) does not exist. The dynamics of the
system can be described by a map composed of three lin-
ear function branches. If we let d — 0, we obtain an
integrate-and-fire model, in which the variable v relaxes
between a rectangular wave-modulated upper threshold
and a constant lower threshold as shown in Fig. 2. It
shows, qualitatively, the exact same dynamic behavior
as map (1) does in the supercritical region where I; < 4
and Iy < %. Here the mapping function is much more
simple, hence the calculation will be much easier.

With a method similar to what we used for map (1),
we have obtained this mapping as follows:

tmt1 = fi(tm) = kitm + bi (1, =1- 3), (2)

where



52 DYNAMIC INTERACTION BETWEEN DISCONTINUITY AND. .. 455

1+A B CH p

. SN/
ARV NN

'\
toi) £1(tad) \
Vi AN

0 ‘
1 bk gt e 3 4
t
FIG. 2. Schematic drawing to show the integrate-and-fire

model describing the rectangular wave-modulated relaxation
oscillator. This figure also shows a complete covering situa-
tion, which will be explained in Sec. III.

k=1, b1=J(1+A),
I4
ks=1, bs=J(1— A).

The ranges of definition of the three function branches
are, for fi, f2, and f3 respectively,

1-A
tmi St <tmm, tmi=n-— s
I;
1+ A4
tmm =n+ 0.5 — _; ;
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FIG. 3. Mapping function of (2) with the parameters A =

0.6, I, = 5.0, and I; = 8.0. The region covered by the images
of the gap G is indicated by crosses.

tmm <tm <tme; tme=n+0.5—

tme St < 1+ tom;-

A is the amplitude of the rectangular wave, I; is the con-
stant arising slope, I is the absolute value of the constant
falling slope of the relaxation oscillation, and J = I ++= I
This map does not have the above-mentioned type of crlt-
ical lines. For any finite values of I; and I;, the map is
both discontinuous and noninvertible. From now until
Sec. V, we will discuss only map (2).

Considering that two branches of map (2) have slope
1, we can get an expression of the Lyapunov exponents
easily. If we assume that in an iteration trajectory of map
(2) there are Q times of iterations visiting [tmi, tmm), P
times visiting [tym,tme), and W times visiting [tme, 1 +
tmi), the Lyapunov exponent A can be calculated as

N-1
A= lim | Zlnlf/(tm,)i (N=Q+P+W)

P
. 1
=1}gnw[ﬁ(21n| 1| +Zln| 1-LJ|
j=1 j=1
w
+Eln[1|)]
j=1

P
1 I;
= Jim | § 2 T
j=1
. P I;
=N, [”ﬁln I_d] : )

Clearly, the sign of the Lyapunov exponent of a trajec-
tory only depends on the absolute value of the slope of the
f2 branch. We thus call it the “characteristic branch.”
When P is not zero, I; > I; and the absolute value of the
slope is larger than 1, A > 0, and the system shows only
chaotic motion; when I; < I, the absolute value of the
slope is smaller than 1, A < 0, and the system shows only
periodic motion. This means that the diagonal divides
the I;-I; parameter plane in two parts with different dy-
namical behaviors. If P = 0, i.e., the iterations do not
visit the characteristic branch, the Lyapunov exponent
can only be zero. That gives rise to some special regions
in the parameter plane where quasiperiodic or periodic
motion with marginal stability may occur.

III. BOUNDARIES OF THE REGIONS
COVERED BY GAP IMAGES

Figure 3 shows a typical mapping function f(¢.)
(mod1), of (2), which is obviously discontinuous and non-
invertible. Because f2(tmm) — f3(tme) = IA > 0, one can
always see a maximum at ¢,,,, and a minimum at ..
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They give rise to an overlapping (or noninvertible) re-
gion on the f(t) axis, where three overlapping branches
of the mapping function are positioned. We indicate the
region by O = [f3(tme); f1(tmm)]. When I; < 4A, t,m
merges with ¢,,; and the f; branch disappears. In this
case we should define O as O = [f3(tme), f2(tmi)]. There
are only two overlapping branches. Also, the gap at t,,;
gives rise to a forbidden region G = [f3(tmi), f1(tm:)] on
the f(t) axis. When J > 21—11, in a return map (modl),
f3(tme) will be lower than fi(¢,:), as shown in Fig. 4.
In some cases, f3z(tme) is even lower than f3(¢,,;). Thus
in such a return map as shown in Fig. 4, one can see a
forbidden region smaller than G or not see any forbidden
region at all. However, please note that in Fig. 2 the
region of the upper threshold between A and C is never
reached by iterations. Therefore, roughly speaking, the
region G = [f3(tmi), f1(tms)] and all of its forward im-
ages form the well-known “transient region” where only
transient iterations can visit. We then say that the for-
bidden region exists implicitly in the case when J > ﬁ.
If we choose t,,, and t,,+1, the times when the relaxation
oscillations reach the upper threshold, as the Poincaré
section, the forbidden region will always exist explicitly.

In the type of circle maps we are discussing, the tran-
sient region often “completely covers” the noninvertible
region. That means it covers two of the three overlap-
ping mapping branches here. The map then becomes
invertible but discontinuous if the transience is ignored.
In some of the systems, in all of the supercritical region,
the noninvertibility is completely covered by gap images.
As we know, the first example for complete covering is an
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FIG. 4. Mapping function of (2) with the parameters A =
0.6, I; = 2.6, and I; = 8.2. The region covered by the images
of the gap G is indicated by crosses. The overlapping region
O is indicated by dashed lines. The stable period-three orbit
ABC is computed with a fixed initial value to = 0.846. The
first 200 iterations were ignored to avoid the transience and
then 500 were recorded.

integrate-and-fire model in which a variable relaxes be-
tween a triangular wave-modulated upper threshold and
a constant lower threshold [32]. The second one is a
model in which both the thresholds are modulated by
synchronizing signals with the exact same form and the
resetting time is zero [33]. We are presently working on
the third example, which is an integrate-and-fire model
with “current modulation” [34, 31]. In a general system,
such as in the current system, only part of the supercrit-
ical region is covered [12,15]. It is interesting that the
complete covering may serve as a way to eliminate chaos
if the Poincaré map of a system is both discontinuous
and noninvertible and the size, as well as the position of
the discontinuity, can be controlled.

Now we calculate the boundaries of the completely cov-
ered regions in map (2). The set of G and its images is

§= lim L"j fi{(Q). (4)

If set S only covers part of region O, as the segments
[B,tme] and [tme, E] in Fig. 4, the iterations from the
rest of region O (as the part of f, branch between t,,,,
and B in Fig. 4), i.e., the difference between O and the
intersection of S and O,

Dy =0\ (50), (5)

may reach region S. As shown in Fig. 4, A, B,C are a
stable period-three orbit with the parameters chosen, B
is just inside D;, and its image C is inside the first image
of G (indicated by crosses). Therefore, the transient re-
gion, which is forbidden for iteration when the transience
is ignored, is

Swn=S\(D[)9); (6)
where D is defined as

D= lm | fi(Dy). (7)
=1

In map (2), if S covers all of the characteristic region
[tmm, tme), We can prove that it should also cover two of
the three overlapping branches in O. We can also prove
that S = G + f(G). The reason is that in this case the
image of f3(tn:) will certainly fall on the f; branch and
the image of fi(tm:) will certainly fall on f3 branch, as
shown in Fig. 3. Then it is easy to obtain

f1(fa(tmi)) = tmi + 2J, (8)

f3(f1(tmi)) = tmi +2J . (9)

In this situation, the positions of the further iterations of
both ends of G are the same. The size of the rest of the
images of G is zero, as shown in Fig. 3. Figure 3 also
shows that G and its first image S = G+ f(G) completely
cover the noninvertible region. However, as discussed
above, S is not the transient region Sp yet. In order
to calculate the boundary of the region where P = 0, we
have to consider the part of overlapping region that is not
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covered by S. We must also prevent the iterations from
this part from entering into the characteristic region in
the next period of the driving signal. In this calculation,
we only discuss the situation I; > 4A. The discussion for
I; < 4A is similar and thus is ignored.

Referring to Fig. 2, we consider that the first image of
G should cover the characteristic region [t,m, tme). That
gives us

f3(tmi) < tmm, (10)

.fl(tmi) > tme- (11)

In Fig. 2 the overlapping region is [f3(tme), f1(tmm)]-
Therefore, according to the definition of the transient
region, we should prevent the iterations from this part
from entering into the characteristic region in the next
period of the driving signal. Thus we have

fl(tmm) < 1 + tmm (12)

or
f3(tme) <1+ tme. (13)

The completely covered region will satisfy (10), (11), and
(12), or (10), (11), and (13).

When I; is small, the falling branch of the relaxation
oscillation may cross many periods of the driven rect-
angular wave. We have to use two integers N and N’
to describe this situation. Assume that I satisfies the
condition

24 2A

—_— < Iy < —
2A 2A
Nt1-24 N - %

(14)

which means that the length of region G, | G |= 24J,
satisfies N <| G |< N + 1. At the same time, assume
that I; also satisfies

which means that the length | f3(tm:) — t(A) | satisfies
N' <| f3(tm:) — t(A) |< N’ + 1. Here t(A) means the
time of point A in Fig. 2. Now we can understand that
Fig. 2 shows N = 1 and N’ = 1. In a general case, with
a similar consideration, we have

and

fitmi) > N+ N' + tpe, (17)
or

fS(tme) > NI + tme- (19)

However, considering the definition of N’, (15), and that
f3(tmi) — t(A) = fa(tme) — t(E), (19) is always satisfied.
The general condition of the boundaries of the completely
covered regions will thus be determined only by (14)-
(18). Similarly, the inequality (13) can be ignored when
N=1and N' =1.

Solving (16)—(18), we get

1-A

—__Nl+l._1+A<Id’ (20)
2 I;
1+4 1+4
<Iij< . 21
1+ N+ N -4 "4 Ty N 134 (21)

Combining (20), (21), (14), and (15), we get

M, < Ij < M,, (22)
1-A 1-A
N'+1<Id< N' (15) where
J
” 24 1-4 1-4 144
= max , , , ,
TT\NHISE NAT NG CGE e
Mo — mi 2A 1-A 1+ A
2 = Imin _%’ N’ ) %+N+N'—-% .

The general condition of the boundaries of completely
covered regions will be determined by (22).

Using (22) with a fixed value A = 0.6, we have drawn
the completely covered regions in Fig. 5, where they are
indicated by dense black lines. One can see that these
regions are separated from each other and are becoming
narrower and narrower as Iy decreases. In order to see the
details where I; is small and to compare the analytical

results expressed by (22) with the numerical results, we
have computed the Lyapunov exponent in the range 0 <
I3 < 0.4 with the fixed values A = 0.6 and I; = 5.0. The
results are shown in Fig. 6. We can see many horizontal
plateaus, where A = 0, in the figure. They should be
completely covered regions. In order to compare them
with (22), we have proved that (22) can be simplified only
into (21) when A > % and I; > 2(1 + A). Specifically,
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FIG. 5. A parameter plane I;-I; with A = 0.6. The re-

gion indicated by dense black lines is completely covered and
drawn by the conditions (22). The region ABGJE is the
phase-locked region with the rotation number W = 1, the
region CDOF is that with W = %, the region M LN is that
with W = %, and the region EIH is that with W = % The
analytical calculation of the phase-locked regions will be pre-
sented in Sec. V.

when I; = 5.0 and A = 0.6, we get N = 3N’ and thus
(21) becomes

0.4 0.4
04 e 04 23
N 1017 ¢S N 10045 (23)

" In Fig. 6 the results of (23) are indicated by the wide
horizontal lines beneath the plateaus and show very good
consistency.
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Parameter I,
FIG. 6. Lyapunov exponent spectrum computed by map

(2). The wide horizontal lines beneath the spectrum indicate
the analytical results by (23) for comparison. The parameters
are A = 0.6, I; = 5.0, and to = 0.5 and the first 200 iterations
were ignored to avoid the transience.

We now define the rotation number of a trajectory in
the current system in order to discuss the condition of
the appearance of quasiperiodic or periodic motion in
the completely covered regions. One of us (D.-R.H.) and
his co-workers have proposed [12] a “firing number” to
denote how many oscillations there are, on average, in
one period of the driving signal T' when discussing our
original nonlinear system. It is defined as

Tn
F=lim ———. 24
n—00 f"‘ (tO) _— tO ( )
The rotation number can be defined as W = 1. Because

F
T is fixed and equals 1 in the current system, W can be

expressed as

n
W= lim {.(0) =to (25)
n—oo n
When an iteration trajectory is periodic, it satisfies
fF(t) = Q+t, where P and Q are integers. The rotation
number becomes W = 3 in this case. If the characteris-
tic region [t,um,tme) is covered by S} so that iterations
cannot visit it if the transience is ignored, we have A = 0.

The rotation number can be expressed as

i Jln+ AV —U)]

n—oo n

w

(26)

where V' is the number of visits by iterations to the f;
branch, U is the number of visits to fs branch, and
n =V 4+ U. When W is a rational number, the motion
should be periodic with marginal stability. Otherwise, W
is irrational and the motion should be quasiperiodic. Nu-
merically we have observed the abrupt transition from a
chaotic motion (in the region where I; > I;) or a periodic
motion (in the region where I; < I;) to a quasiperiodic
motion when changing a control parameter to cross the
boundary of a completely covered region. This transi-
tion, having been observed also in a biological system
[16] and in other systems of this type [34], should have
different characteristics.

IV. HOLE AND ITS APPEARANCE CONDITION

When studying a period-p attractor of the map, includ-
ing its evolution and loss of stability, one has to consider
the discontinuous (or jumping) behavior of fP(t) at some
inverted images of t,i, i.e., f ®(tm;) (k < P). These
discontinuities are only implicitly expressed in the f(t)
mapping functions as can be seen in Fig. 3 or 4, but will
be explicitly expressed in the fP(¢) mapping function. If
the number k of the inverted images falls into the non-
invertible region O there will be two or three f~*(t,,;),
denoted by f;*(tm:) (i =1-3), around either the maxi-
mum or the minimum. Here 7 indicates that it is on the
fi branch. We define the region (f;~ k(t,m-), fa k(tmi)) or
(£5 %(tmi), f3 ¥ (tmi)) as the hole if 7 can take values of
only 1-2 or 2-3. When i=1-3, we define one of these two
regions, the one smaller in size, as the “hole”. Please note
that this definition suits the original form (1) and (2) of
mapping and does not necessarily suit what is shown in a
return map (mod 1) such as Fig. 3 or 4. By using p-fold
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minimum %, is higher than t,,; so that f~(¢,,;) cannot
fall in region O and thus is single valued. Therefore, if we
need to study a period-two attractor, the corresponding
two-fold iterated mapping function in Fig. 7(b) shows

iterated mapping, one can show that the hole is really a
kind of structure as described by its name and that the
appearance of the hole is a kind of critical phenomenon.
As an example, Fig. 7(a) shows a situation where the

i ——t . 1.0 —— —r— T T
-‘ 0.9 i
] 0.8 i
S]/ : s
f2 4 0.7 E
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(a) Mapping functions of (2) (mod 1) computed at I; = 1.0, I = 3.8, and A = 0.6 (position P, in Fig. 8). The thin

solid lines show the position of discontinuity t,,:, which is still lower than the minimum ¢,,.. The basin of the only attractor S
is the whole phase space. (b) Two-fold iterated mapping function of (2) (mod 1) computed with the same parameter values as
in (a). There is no hole yet and S; is the only attractor. (c) Mapping function of (2) (mod 1) computed at I; = 1.04, I; = 3.8,
and A=0.6 (position P; in Fig. 8). The thin solid lines show the position of ¢,,;, its first inverted image f; ' (tm:) and f; '(tmi),
its second inverted image f; '(f; '(tmi)), and the minimum tn. and its first inverted image (falling in the forbidden region).
(d) Two-fold iterated mapping function of (2) (mod 1). The parameter values are the same as in (c). It is shown that there is
a hole between f; (tm:) and f; *(tm:) and that a stable period-two orbit S, and S} appears, the basin of attraction of which
is the hole and its first backward iteration [see (c)]. At the same time the original period-one attractor S, is still stable and
attracts the iterations from the rest of the phase space.
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that no hole appeared. When a parameter, for exam-
ple I, is increased so that t,,; becomes larger than t,,.,
fY(tms) falls in O and thus is multivalued, as shown by
Fig. 7(c). Thus, in the two-fold map, the piece of the
mapping function between f; !(tm:) and f3 *(tm:) is cut
off by the sudden appearance of the pair of discontinuities
to form a real hole, as shown in Fig. 7(d).

If all the further inverted images of f~%*(t,,;) and t.,
ie, f77(tmi) (k<j<p)and f7°(t,) 1 <s<p—k-—1),
do not fall in G (¢. denotes either ¢,y Or t,me), the pairs
of discontinuities at all the f; 7 (¢;:) (k < j < p) around
the extrema f~%(t.) (1 < s < p— k — 1) in the p-fold
iteration mapping will also form holes. Thus all of the
holes together will equal p — k. We call these p — k holes
a “set of holes” since all of them are formed by the back-
ward iterations of f7*(tm,;). If any f; 7 (tm:) (kK < j < p)
(¢=1-3) in this set falls in region O again, f; 7 (tm:) will
be multivalued. We shall have to trace the inverted im-
ages of all of the f; 7/ (¢m:) to count holes according to the
same rule. Therefore, if all the inverted images of the jth
generation fall in O, we may have to trace 37 inverted
images of the next generation. That makes difficulties
for both the analytical and the numerical investigations
when P is large enough. One may think, according to the
above statements, that the number of holes may increase
very fast when P increases and form an infinite set when
P — oco. That may not be true because f; ?(tm:) and
f%(t.) often fall in G and stop the increase of the num-
ber of holes. We shall present a numerical investigation
in Sec. VI to show the situation. For the current map (2),
the condition of the appearance of so-called (k + 1)-order
holes can be expressed as

f(tme) < f_k(tmi) < f(tmm) (27)

V. BOUNDARIES OF ARNOLD TONGUES
AND REGIONS WHERE PERIODIC
ATTRACTORS COEXIST

‘We have proved in Sec. Il that the diagonal I; = Iy
divides the parameter plane I;-I; in two regions where
either periodic or chaotic attractors exist. Now we calcu-
late the boundaries of Arnold tongues in the region where
Iy > I.

As is known, the conditions of a period-p attractor are

fp(tm:i) = Q + tm.‘i7 (28)
P
I11 # i) 1< 1 (29)

where 7 = 1,2,...,p denotes the jth stable periodic
point. For the current map there should be at least one
tmj on fz branch, i.e., in region [tmm,tme), to satisfy
(29). We denote it as t3,,; and define function g(tzm;) as

9(tams) = 27 (fa(tams)) — Q@ — tam;- (30)

g(t2m;) is continuous and differentiable in [t;m,tme) in
a parameter region if either of the following conditions

is satisfied. First, holes cannot appear here. This means
there cannot be any f; k(tm,-) (k < p). Second, holes
can exist, but the edge of the hole on fa, f5 ¥ (tm:), never
collides with any t3,,;. This means it is impossible to
have tom; = f5 k(tm,-). In such a region, the boundary of
the period-p Arnold tongue should be decided by

9(tamj) =0, (31)

tmm < thj < tme- (32)

While in a region where there are r values of t3,,; (1 < p)
that satisfy tom;(r) = f5 *(tmi), g(tzm;) is discontinuous
at tam;(r). We then have to divide the region [t,m,tme)
into r+1 subregions, i.e., S; (i = 1,2,...,741), so that in
every one of them g(t3,,;) becomes differentiable. Thus
the condition of the boundary of the period-p Arnold
tongue becomes

9(tamj) =0, (33)

tamj € S;. (34)

This means we have to discuss respectively each sub-
region because the jumping behavior of g(t2m;) at the
boundary of S; may induce the jumping of the corre-
sponding boundary of the periodic region. We may also
say that the Arnold tongue is confined by the condition
of the collision between the periodic attractor and the
hole.

Using (30)—(34), we shall calculate the boundary condi-
tions of period-one, -two, and -three regions. The results
are shown in Figs. 5 and 8 with a fixed value of A = 0.6.

When p = 1 the image of the only periodic point t2,,;
should always be itself and thus never be t,,;. The col-
lision condition does not exist. Therefore the boundary
condition should be solved by (31) and (32). In this case
9(tamj) = f2(tamj) — 1 —tam;. From (31) and (32) we get

IL(1-A) L(1+ A)
—_— < ———— wh I; > 4A,
L—(1—A4) ST —(aya " 52
(35)
L1 - A) I? +2L;(1 — A)
il Sulle? SRR 4 i S et el 4 .
Ii—(l—A)< a < L—20=4) when I; < 4A,

(36)

They confine a period-one region between the lower line
PB; (AB) and the upper line PB; (EJ — JG) in Figs. 5
and 8.

When p = 2 we cannot exclude the collision condition
and we have to consider whether holes can exist. By
Eq. (27) we can express the condition of the appearance
of the first-order hole as

f(tme) < tmi < f(tmm) (37)
The solution is
2I;(1 — A) 2I;(1 + A)
i—20-4) <5 -2a-4) (38)
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FIG. 8. Phase diagram to show the analytic results of
several Arnold tongues and the corresponding regions where
these periodic attractors coexist. The area covered by oblique
lines at the lower part is the Arnold tongue % The area
covered by vertical lines is the % tongue. The oblique lines at
upper part cover the area % and the horizontal lines cover %
The region between lines QR and M N is the possible stability

range of the attractor with W = % and the region between

lines QR and HI is that of the attractor with W = % The
two lower boundaries coinciding along QR is occasional due
to the chosen A = 0.6. All other lines in the figure have been

explained in the text.

which confines a region between the two H; lines in
Fig. 8. Also, the second-order hole’s region has been
solved by

f(tme) < f_l(tmi) < f(tmm) (39)
This region is between the two Hj lines in Fig. 8 and is
expressed by

4I;(1 — A)

I, —4(1 - A)

4I;

Jo< — i
<< TTia-2)

(40)
One can see there are no holes in the region beneath the
lower line H,.

In this case (p = 2) g(t2m;) has two possible forms:
fi(fa(tams)) — 1 — tom; and fa(f2(tam;)) — 1 — tam;. In
the region

2I1'(1 — A)

< =4y

(41)
i.e., below the lower H;, the boundary of the period-two
region should be solved by (31), (32), and (41). How-
ever, we find that they have no solution for the chosen
parameter (A = 0.6) with both of the g(tzm;) forms.

While in the region between the two H;, there is a hole
and thus a f; 1(t,m-) on f,. We should consider either
51 = (tmm, 3 *(tms)) or Sz = (f3 '(tmi),tme) and then
solve the boundaries of period-two tongue by (33), (34),
and the first-order hole condition (38). The only solu-
tion, with A = 0.6, confines the region between the two
H; lines, which are expressed by (38). In the region

2L;(1 + A)

> —a=ay

(42)
i.e., beyond the upper Hj, the boundary of the period-
two region again should be solved by (31), (32), and (42).
The second-order hole may appear here, however, it does
not influence the period-two attractor, as discussed in
Sec. VI. The solution is

oI, 2I(1 + A)

i 2E0 44 Ghen I >44, (43
L2 > aa-a VR K (43)
L +4L( = 4) 20+ A hen I < 44
h—aa—a) Sl Taaoay Ve ki<

(44)

They confine a region between the upper H; and the
upper line PB; (line FO) in Fig. 8. Putting the results
together, we get the period-two region between both PB,
lines (the lower PB; is superposed on lower H;). It is
expressed by

2L, 2L(1-4)
L—2 47 I, =201-A4A)

when I; > 4A, (45)

1;-2 + 4Ii(1 - A)
I, —4(1 - A)

2I;(1 — A)

> > a4

when I; < 4A4.

(46)

There is an overlapping region of period-one and period-
two Arnold tongues between the lower PB, and the up-
per PB; in Fig. 8. In this region the two periodic attrac-
tors with the rotation number % or —;— coexist. Following
a vertical line in Fig. 8, one finds that the coexistence
of the two attractors is created by the appearance of the
first-order hole at lower H; and is destroyed by the van-
ishing of the period-one condition at upper PB;.

When p = 3 we have to consider two cases where the

rotation number W = = equals, respectively, % or 2, If

5
Q =1, g(t2m;) has eight possiblé forms, where the term
of f7~1 in Eq. (30) may be expressed as f3fs, faf1, f1f3,
fifi, fif2, faf1, fafz, and fafs. As previously done,
we must discuss all the cases. For the f3fs form, we
have a solution that confines a region between lines ML
and MN in Figs. 8 and 5. Here line ML indicates the
collision of the second-order hole with the periodic point
on f, and line M N indicates the range of the stability of
the % tongue. The region can be expressed as
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’Ii(3_A) > I >

I? +2(1 — A)L + +/If +36(1 — A)2IZ — 4(1 — A)I?

I - (3-A4)

2T; — 4(1 — A)]

(47)

For all the other forms of the term of fP~1, i.e., faf1, f1fs, fif1, fife, fof1, faf2, and fzfs, our calculation shows

that there is no solution in the range of chosen parameters.

If Q@ = 2, g(t2m;) also has the same eight possible forms. Similarly we have discussed all the cases and found that
only for the form f3f; the solution confines a region in Fig. 8. The region can be expressed as

L3+ A) S I >

3IZ — 2(1 — A)L; — /OIF + 4(3 — A)’I7 — 4(7 + 3A)I}

I, -3+ 4)

which is the area between line EI and line HI in Figs. 8
and 5. Line ET indicates the collision of the second-order
hole with the periodic point on f, and line HI indicates
the range of the stability of the -§— tongue.
One can see again two regions in Fig. 8 where period-
two and period-three attractors coexist. The Arnold
1

tongues 3 and % overlap in the region between line KL

and upper PB,, while the tongues % and % overlap in
the region between lines EI and HI. This is all the %
region.

These analytical results have been compared with the
numerical ones. The boundaries obtained from both
methods are in very good agreement.

VI. DISCUSSION

In this section we discuss some questions that may be
induced by the above analytical results. First, we dis-
cuss the specificity of the kind of coexistence of periodic
attractors appearing in a both discontinuous and nonin-
vertible map such as the present one [14,15].

The parameters of Figs. 7(a) and 7(b) are chosen at
point P;, just below the lower H; line in Fig. 8. One sees
that there is no hole. The only attractor is the stable
fixed point at S;. When I; increases a little bit to cross
line H, and reaches Ps, a hole appears in the two-fold it-
erated map, as shown in Figs. 7(c) and 7(d). In Fig. 7(d)
we can see three intersections between the fZ(t) map-
ping function and the diagonal line, i.e., three stable fixed
points of f2(t) marked by S;, S2, and S5. Each of them
has its own basin of attraction. Referring to Fig. 7(c),
we recognize that S; is the original period-one attractor.
The hole region (f; *(tmi), f3 1gtm,-)) and the region of
its first inverted image (f3 ' (f5 ' (tmi)),tmi), i-e., the set
of holes (this term has been defined in Sec. IV), becomes
a loophole of its basin. These regions therefore form a
basin of another attractor. Since the period-two condi-
tion exists here as shown in Figs. 8 and 5, it is reasonable
to conclude that the period-two attractor occupies this
new basin as shown in Fig. 7(d). Obviously, the coexist-
ing period-two attractor appears and the old basin of the
period-one attractor splits exactly when the hole appears.
That is why we call it “hole-induced coexistence of attrac-
tors” [14,15]. In generic cases there may be many holes
in an fP(t) map. If one of the coexisting attractors visits
a hole formed by the multivalues of f~*(t,:) (k < p),

2l — 2(1 — A)]

) (48)

it will also visit all the f77(tmi) (k < j < p), the set
of holes formed by the backward iterations of f~*(t.),
as we have discussed in Sec. IV, while another coexisting
attractor always stays outside this set of holes. We thus
denote this hole set by “principal set.” In the example
discussed here and in Sec. IV, the further inverted im-
ages of the hole fall in the forbidden region, as shown in
Fig. 7(c), and thus do not exist. Therefore the basin of
the attractor inside the principal set is only the first hole
and its first backward image. In generic cases this basin
should be the set of all the backward iterations of the
first hole [14,15].

When P, the period of the Arnold tongues, increases,
the number of holes that may appear in the P-fold iter-
ated map also increases, as pointed out in Sec. IV. We
then have to divide the characteristic region into more
and more subregions in order to discuss the boundaries of
the tongues. Furthermore, the hole-induced coexistence
of periodic attractors have more chances to occur. What
is the influence of these two new features on the Devil’s
staircase, if it still exists? This is the second question we
discuss here.

In order to get an understanding of this question in
a numerical way, we have computed some Devil’s stair-
cases. All the numerical results are in very good agree-
ment with our analytical conclusions expressed in Figs. 5
and 8. Figures 9(a) and 9(b) show two of them. It is rea-
sonable to say that there are still good Devil’s staircases
if we consider the fact that the current map is a model of
a practical system with two competing frequencies. How-
ever, the Devil’s staircases have two characteristics dif-
ferent from the ones in an everywhere differentiable map.
The first is that the overlap of the neighboring steps are
very common if the staircase is computed with different
initial values as we have done here. According to the pre-
vious discussion, we have computed every step with only
two initial values. One is always inside the principal set
of holes and another is always outside it. The computa-
tional results are then put into the same figure and show
the overlapping of the phase-locked steps in wide ranges.
However, it should be noted that not every pair of neigh-
boring steps is overlapping. In Figs. 9(a) and 9(b) one
sees there may be an infinite number of small steps re-
vealing the self-similar structure between the neighbor-
ing steps, which are not overlapping, as shown in the
lower left inset of Fig. 9(a) and the upper right inset
of Fig. 9(b). Furthermore, it seems that the overlap of
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neighboring steps erases all the middle steps and makes
the staircase, in this part, very simple. The second char-
acteristic of the staircases is that some steps, which are
computed with the same rotation number W (P is quite
large) but from different initial values, separated from
each other as seen in the lower left inset of Fig. 9(a) and
the upper right inset of Fig. 9(b). We argue that this
is due to the fact that the number of subregions S; is
now large and that the jumping behavior at their edges
may be very complicated. We may also add a third new
characteristic, which is that the complete covering of Sj
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FIG. 9. (a) Devil’s staircase computed at A = 0.6 and
I; = 3.2. The initial values were chosen, respectively, outside
and then inside the principal set of holes. The first 400 iter-
ations were dropped to avoid the transience. The left lower
inset is the magnification of the related parts to show the
self-similar structure. The right upper inset shows that W
decreases monotonically when I increases. (b) Devil’s stair-
case computed at A = 0.6 and I4 = 9.5 similarly. The upper
inset is the magnification of the related parts to show the self-
similar structure. The lower inset shows that W decreases
monotonically when I; increases. Please note that if I; > 9.5,
the system enters the chaotic region (see Fig. 5).

will also erase some steps, as can be seen in the region
I; = 3.5 — 4.8 in Fig. 9(b) (please refer to Fig. 5).

The third question one may ask is, How many holes
are there in a P-fold iterated map describing a P-period
attractor? We have to say that the answer is strongly
dependent on the parameters and that it is quite difficult
to calculate or even compute generally the number of the
holes when P is large enough. In Fig. 10 we show a nu-
merical result of hole numbers computed with the same
parameters as in Fig. 9(a). The initial value is chosen
inside the principal set of holes so that there is only one
number of P for each I; value. These numbers of P are
addressed in Fig. 10. We can see that there are also some
horizontal plateaus corresponding to different P values
in this figure. Usually each P value corresponds to sev-
eral plateaus. The number of holes, generally speaking,
increases when P becomes larger. However, the rule is
very complicated, as can be seen in Fig. 10. Also, the
number of holes is not as large as we expected when P
becomes larger. The reason is that the inverted images
of the gap G as well as the extrema often fall in G and
thus the increasing of the hole number is stopped as we
have mentioned in Sec. IV.

The next question we discuss here is, What happens if
there is a piece of mapping function with a slope tending
to infinite instead of the gap so that the map becomes
continuous? In order to answer this question, let us now
return to map (1), which was introduced in Sec. II and
described the trapezoidal wave-modulated relaxation os-
cillator. It is easy to see that the dynamics of this system
in the supercritical region, where both slopes I; and I
of the relaxation are smaller than %, is qualitatively the
same as we described above. That is because, in this re-
gion, map (1) is also composed of three linear branches,
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FIG. 10. Diagram computed with the same parameters

as in Fig. 9(a) to show the number of holes appearing in the
P-fold iterated mapping. The initial value was chosen inside
the principal set of holes so that there is only one value of
P for each I;. The first 400 iterations were dropped to avoid
the transience to determine P. All the P values are addressed
with the numbers inside.
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two of them having a slope of 1. Branch f; disappears
when I; becomes smaller and crosses the value %. Now, if
we increase I; from a value in this supercritical region to
cross %, the f; branch will appear again and the discon-
tinuity will disappear. The covered regions, holes, and
all other features we discussed will also disappear. At
the criticality, where I; = %, the situation is exactly like
what happened in the current question. We can say now
that we are in a critical condition of a continuous phase
transition. There are several scaling exponents signify-
ing the criticality as several people have already discussed
[35,28,31,17,11].

In this paper we have discussed the role of discontinu-
ity, especially the interaction between discontinuity and
noninvertibility, and the influence of this interaction on
the system’s dynamic behavior. We have shown that
in a kind of one-dimensional map an interesting feature,
namely, a hole, is convenient for explaining the mecha-
nisms of some specific phenomena. Since the concept of
hole denotes only a special pair of discontinuities, we may
explain all the mechanisms of the dynamic phenomena by
using only discontinuity. For example, we may express
one of the boundary conditions of the Arnold tongues
in the current system in the following ways: (i) It in-
dicates that a periodic attractor vanishes via a collision
with a hole and (ii) it indicates that whenever a dis-
continuity approaches the diagonal, a periodic orbit will
vanish abruptly. There should be some specific phenom-
ena whose mechanisms connect only with the concept of
discontinuity and cannot be explained by a hole. One
phenomenon discussed in this paper, namely, the cover-

ing of noninvertible region by gap images, serves as an
example. Also, whenever a discontinuity approaches a
chaotic attractor, the attractor will probably exhibit a
sudden, topological change via different kinds of interior
crises, as we have observed in the current system. We
will report that the mechanism of one kind of the crisis
can be explained by either discontinuity or a hole, but
the mechanism of another kind can be explained only by
discontinuity [36]. Therefore, the last question is, Can we
obtain a more general, but still quantitative description
for the mechanisms of all the specific dynamic phenom-
ena in both discontinuous and noninvertible maps? We
shall try to present a further study on this question in a
future paper.
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